
What’s new in Conan 2.0
The lessons we have learned from the C++ ecosystem

Christopher McArthur, Conan Developer Advocate

Everything is new!

5 years, without breaking

60% new code, 20%
backports

1.X ⇔ 2.0 compatible syntax
subset

1.0 2.0

CppLang #conan slack

PyPI downloads (Conan tool)

- 684K downloads/month from
PyPI

- Designated as PyPI critical
project (1% of most
downloaded in whole PyPI)

Github PRs

Github PRs

So far!

Support

+2000 Github issues / year

100 hr/year user video calls

Direct support (slack, almost
daily)

Artifactory servers running Conan in production
and telemetry enabled (no firewalls)

Tribe 2.0 (conan.io/tribe.html)

Bose

TomTom

Continental

Nasa

Apple

Ansys

Bloomberg

Rohde & Schwarz

Bosch

ASAP

Rti

Zeiss

Nasdaq

Plex

Keysight

Datalogics

VMWare

… 50 more

https://conan.io/tribe.html

Overview

- 4 lessons:
- Learning to fly
- Building a dam
- Dying of a thousand bites
- Repeating yourself

- Conclusions

1. Learning to fly

Conanfile: A package “recipe”

math/1.0

from conan import ConanFile

class Math(ConanFile):

 name = "math"

 version = "1.0"

 def source(self): ...

 def build(self): ...

 def package(self): ...

math/conanfile.py

$ git clone … math && cd math
$ conan create .

12

math/1.0
binary

Conan 1.X dependency model: Transitive deps

engine/1.0

math/1.0
from conan import ConanFile

class Engine(ConanFile):

 requires = "math/1.0"

requires

game/1.0

requires
from conan import ConanFile

class Game(ConanFile):

 requires = "engine/1.0"

 generators = "CMakeDeps"

$ git clone … game && cd game
$ conan install .
$ cmake …

set_property(TARGET math::math …)

math-config.cmake

set_property(TARGET engine::engine …)

engine-config.cmake

13

Conan 1.X dependency model: Transitive deps

engine/1.0

math/1.0

requires

game/1.0

requires
set_property(TARGET math::math …)

math-config.cmake

set_property(TARGET engine::engine …)

engine-config.cmake

Shared library

Static library

Static library

Learning to fly

engine/1.0

math/1.0

requires

game/1.0

requires

Shared library

Static library

Static library

Conan 2.0 proposal

engine/1.0

math/1.0

requires

from conan import ConanFile

class Engine(ConanFile):

 name = "engine"

 version = "1.0"

 def requirements(self):

 self.requires("math/1.0")

engine/conanfile.py

16

Conan 2.0 proposal: Requirement traits

engine/1.0

math/1.0

requires

from conan import ConanFile

class Engine(ConanFile):

 name = "engine"

 version = "1.0"

 def requirements(self):

 self.requires("math/1.0",

 headers=True, libs=True)

engine/conanfile.py

17

Conan 2.0 proposal: Requirement traits

engine/1.0

math/1.0

requires

from conan import ConanFile

class Engine(ConanFile):

 name = "engine"

 version = "1.0"

 def requirements(self):

 self.requires("math/1.0",

 headers=True, libs=True)

engine/conanfile.py

set_property(TARGET math::math PROPERTY INTERFACE_LINK_LIBRARIES ...)

set_property(TARGET math::math PROPERTY INTERFACE_INCLUDE_DIRECTORIES ...)

math-config.cmake

18

Conan 2.0 proposal: Requirement traits

engine/1.0

math/1.0

requires

from conan import ConanFile

class Engine(ConanFile):

 name = "engine"

 version = "1.0"

 def requirements(self):

 self.requires("math/1.0",

 headers=False, libs=True)

engine/conanfile.py

set_property(TARGET math::math PROPERTY INTERFACE_LINK_LIBRARIES ...)

set_property(TARGET math::math PROPERTY INTERFACE_INCLUDE_DIRECTORIES ...)

math-config.cmake

19

Conan 2.0 proposal: Requirement traits

engine/1.0

math/1.0

requires

from conan import ConanFile

class Engine(ConanFile):

 name = "engine"

 version = "1.0"

 def requirements(self):

 self.requires("math/1.0",

 headers=True, libs=False)

engine/conanfile.py

set_property(TARGET math::math PROPERTY INTERFACE_LINK_LIBRARIES ...)

set_property(TARGET math::math PROPERTY INTERFACE_INCLUDE_DIRECTORIES ...)

math-config.cmake

20

Conan 2.0 proposal: Direct vs. transitive dependencies

engine/1.0

math/1.0

requires (direct)
class Engine(ConanFile):

 def requirements(self):

 self.requires("math/1.0")

game/1.0

requires (direct)

class Game(ConanFile):

 def requirements(self):

 self.requires("engine/1.0")

self.requires("math/1.0")

requires
(transitive)

21

Linkage requirements propagation

engine/1.0
(shared)

math/1.0

requires (direct)

game/1.0

requires (direct)

class Engine(ConanFile):

 def requirements(self):

 self.requires("math/1.0",

 headers=True, libs=True,

 transitive_libs=False)

class Game(ConanFile):

 def requirements(self):

 self.requires("engine/1.0",

 headers=True, libs=True)

requires
(transitive)

set_property(TARGET math::math PROPERTY INTERFACE_LINK_LIBRARIES ...)

set_property(TARGET math::math PROPERTY INTERFACE_INCLUDE_DIRECTORIES ...)

math-config.cmake

22

self.requires("math/1.0",

headers=False,

 libs=False)

Package Types

23

class Math(ConanFile):

 name = "math"

 version = "1.0"

 package_type = "static-library"

 # OR options = {"shared": [True, False]}

math/conanfile.py

engine/1.0

game/1.0

class Engine(ConanFile):

 package_type = "shared-library"

 # OR options = {"shared": [True, False]}

 def requirements(self):

 self.requires("math/1.0")

math/1.0

engine/conanfile.py

class Game(ConanFile):

 package_type = "application"

 def requirements(self):

 self.requires("engine/1.0")

game/conanfile.py

Demo

engine/1.0

game/1.0

math/1.0

Shared library

Static library

Static library

Dependency graph 2.0

- Correct linkage requirements
- Correct header visibility
- Possible hidden/private

dependencies
- and many more (ACCU 2022)

Among different build systems!

Compatible “requires” syntax with 1.X

https://youtu.be/kKGglzm5ous

2. Building a dam

App build & runs: great job!

Extremely opinionated ecosystem

They: I want the libs from Conan dependencies in my project folder

Us: No need for it, you can use the libs from the cache

They: But the dependencies should be in the project

Us: Not really, many other package managers Maven, pip, do not put dependencies in your project

They: But it is easy, why don’t you just put the dependencies libs in my project folder

Us: It is easy that they will conflict, different versions of the same, or different binaries, no metadata, no
synchronization, more space in disk

…

They: I want the libs in my project folder, they should be there

Deployers

def deploy(conanfile):

 …

.conan2 (CONAN_HOME)

extensions/deploy
mydeploy.py

def deploy(conanfile):

 …

Builtin deployers
- full_deploy
- direct_deploy

$ conan config install
<url/git/path>

mylocaldeploy.py

Demo

Deployers

- Flexible way to extract
artifacts from cache

- Automate post-conan
tasks

- Not in recipes, scale
- User customizable,

“conan config install”
installable

3. Dying of a thousand bites

Plugins

The solution - empower users to do it themselves!

Provide a framework for users to build solutions tailored to their needs with
mechanisms that give them controlled management.

- Profile
- Command Wrapper
- Package Signing – Demo

Let’s build our game for the local
developer’s system

Profile Plugin

[settings]

os=Linux

arch=x86_64

build_type=Release

compiler=gcc

compiler.cppstd=gnu20

compiler.libcxx=stdlib++11

compiler.version=8

profiles/linux-gcc

game/1.0

game/1.0
binary

What if we need to build, test and
ship for multiple versions?

Profile Templates (1.x)
[settings]

os=Linux

arch=x86_64

build_type=Release

compiler=gcc

compiler.cppstd=gnu20

compiler.libcxx=stdlib++11

compiler.version=8, 10, 12

profiles/linux-gcc-#

game/1.0

game/1.0
binary

game/1.0
binary

game/1.0
binary

Given just one profile we can now
build 8+ combinations of the game
binary

game/1.0
binary

Profile Templates (1.x)
[settings]

os=Linux

arch=x86_64

build_type= {{ os.getenv("MY_BUILD_TYPE") }}

compiler=gcc

compiler.cppstd=gnu20

compiler.libcxx=stdlib++11

compiler.version= {{ os.getenv("MY_GCC_VER") }}

profiles/linux-gcc

game/1.0
binary

game/1.0

game/1.0
binary

Profile Templates (1.x)

[settings]

compiler=gcc

compiler.cppstd=gnu20

compiler.libcxx=stdlib++11

compiler.version={{ os.getenv("MY_GCC_VER") }}

profiles/linux-gcc

[settings]

compiler=gcc

compiler.cppstd=gnu20

compiler.libcxx=stdlib++11

compiler.version=6

profiles/linux-gcc

$ export MY_GCC_VER=6

Dev’s enviroment

Profile Plugin

How can we ensure that the profiles being
used are valid settings?

gcc-6 with c++20 (which was introduced in
gcc-8)

apple-clang 12 with c++23

[settings]

os=Linux

arch=x86_64

build_type=Release

compiler=gcc

compiler.cppstd=gnu20

compiler.libcxx=stdlib++11

compiler.version=6

profiles/linux-gcc-5

https://gcc.gnu.org/projects/cxx-status.html
https://gcc.gnu.org/projects/cxx-status.html

Profile Plugin

def profile_plugin(profile):

 …

.conan2 (CONAN_HOME)

extensions/plugins
profile.py

Builtin profile plugin
- Check cppstd
- Match msvc runtime

$ conan config install
<url/git/path>

Profile Plugin

Check ``cppstd`` ensure the settings
being used exist for the version of the
compiler.

[settings]

os=Macos

arch=x86_64

build_type=Release

compiler=apple-clang

compiler.cppstd=23

compiler.libcxx=libc++

compiler.version=14

profiles/macos-x86-ac14-23

$ conan create game -s compiler.version=12 -s compiler.cppstd=23

ERROR: The provided compiler.cppstd=23 requires at least apple-clang>=13 but version 12

provided

Sample output

Profile Plugin

Picking MSVC Runtime Optimization

- Depending on compilation optimization
- Use the matching runtime /MT, /MTd, etc..

Changing from Debug to Release will be applied through out.

Profile Plugins

There’s two plugins that are included with Conan 2.0

- Check if ``cppstd`` supported by the compiler.
- This was hardcoded in 1.x

- Visual studio runtime usually match the build type
- Can now be set by profile, so ``-s build_type=Debug -s compiler.runtime=Debug``
- You can disable this rule, but it's available for 2.0 migration

User defined and extensible can be tailor to enforce workplace or project specifics
conventions, contratins, or compliance.

Command Wrapper

Allows you directly manipulate the ``self.run`` calls with extra arguments or
variables.

For example we can intercept all the calls to CMake and make sure the variables
for compiler launcher is set this way we can have ccache being used to speed up
build times

def cmd_wrapper(cmd):

 if cmd.starts_with("cmake"):

 return "CMAKE_CXX_COMPILER_LAUNCHER=ccache {}"'.format(cmd)

 return cmd

extensions/plugins/cmd_wrapper.py

Package Signing

Absolutely critical to addressing supply chain security. The one feature offers the
most room for innovation within the C++ Open Source ecosystem.

Completely extensible to allow existing solutions are new external integrations to
be developed or incorporated.

Packaging Signing

.conan2 (CONAN_HOME)

extensions/plugins/sign

No built option (yet)

$ conan config install
<url/git/path>

def sign(ref, ...):

 …

def verify(ref, ...):

 …

sign.py

Package Signing

Takes when talking to a remote (i.e not invoked when creating packages locally)

- ``sign`` place when uploading recipes
- ``verify`` takes place during install

These two methods will able to compute signatures and read/write them to a
special “signing data folder” in the cache to be reused.

Demo

Plugins

This will put users in control and that’s not to mention custom commands or the
python API which I did not share today.

You’ll need to watch Diego’s CppCon for that.

Stay tuned we have an exciting news about integrations - conan_io on twitter or
subscribe to the newsletter.

4. Repeating yourself

Binary Compatibility

What exactly does this mean? We’ll depends who you ask to let me explain the
perspective of Conan and how it images packages

math/1.0
binary

engine/1.0
binary

engine/1.0

math/1.0

requires Compatible if I change compiler version???

Binary Compatibility

Binary packages each have unique ID regardless of compatibility

Different configurations – match exactly the same settings (must be compatible) –
except when it’s not…

math/1.0
binary

Package_ID: 6af9cc7cb931c5ad942174fd7838eb655717c709

Binary Compatibility

Packages IDs are computer from the binary model of the recipe (settings and
options)

Binary Compatibility

So compatibility in Conan means different package IDs and be interchangeable
and still result in a valid final binary

Different inputs – same output

math/1.0
binary

Package_ID: 6af9cc7cb93

math/1.0
binary Package_ID: 23b828d52c

engine/1.0
binary

Package_ID: 798a2fe39d

Compatibility Plugin

def compatibility(conanfile):

 …

.conan2 (CONAN_HOME)

extensions/plugins/compatibility/compatibil
ity.py

compatibility.py

Built-in compatibility with
- Different cppstd

$ conan config install
<url/git/path>

Demo

Picking a lower ``cppstd`` then in our settings

Let’s build math and engine with cppstd 14

Let’s build our game with cppstd 17 is should find compatible packages for cppstd 14 for the two dependencies

– > Starts with math cppstd 17 if not found it will look for 14 (not just mixing)
There’s a defined priority queue

By default it’s a deterministic list — you can change this and write your own! Another build type or compiler version it’s
your choice!

Conclusions

New graph

New plugin extensions

New deployers

New binary compatibility

Multi-revision cache

package_id

Lockfiles

New configuration and
environment

Package immutability
optimizations

… and many more

https://docs.conan.io/en/2.0/whatsnew.html

https://docs.conan.io/en/2.0/whatsnew.html

Conclusion

pip install conan==2.0-beta.5

https://conan.io

https://conan.io

